
"NPS CS-92-014

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A258 781

DTIC
ELECTE K

JAN 0 6 i993

A MODEL FOR MERGING SOFTWARE
PROTOTYPES

David A. Dampier
Luqi

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

93-00319
98 ' 1 05 04 9 ENHEIN

NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL R. W. WEST JR. HARRISON SHULL
Superintendent Provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Luqi

Associate Professor of

Computer Science

Reviewed by: Released by:

VALDIS BE INS A/ RTO
Associate Chairman for Dean of Research
Technical Research

UNCLASSIFIED
1r1T CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
iEPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

ECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
)ECLASSIFICATION/DOWNGRADING SCHEDULE disron is unlimited

distribution is unlimited

:RFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
S CS-92-014

JAME OF E•EIFORMWG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
nputer cience Dept. (if applicable)

ial Postgraduate School CS(52)

0DDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

nterey, CA 93943
JAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

)RGANIZATIONf (if applicable)

val Postgraduate School OM&N Direct Funding
WDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. . N NO. ACCESSION NO.

)nterey, CA 93943
nTE lr/u~de._ Secunit Classifhca 'oniFIODELFOR Mcd ERGING SOFTWARE PROTOTYPES

'MfL60VfRLUQI

.WTYPEF REPORT I 13b. TIME COVERED I14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
cI FROM TO I92/09/23 I 16

3UPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

IELD 'GROUP SUB-GROUP SOFTWARE, AUTOMATION, COMPUTER AIDED PROTOTYPING,
MAINTENANCE, FORMAL MODELS, SOFTWARE ENGINEERING,
SOFTWARE MERGING, CHANGE INTEGRATION, CASE TOOLS

kBSTRACT (Continue on reverse if necessary and identify by block number)
As software becomes more complex, more sophisticated development and maintenance methods are needed

.nsure software quality. Computer Aided Prototyping achieves this via quickly built and iteratively updated
totypes of the intended system. This process requires automated support for keeping track of many independent
nges and for exploring different combinations of alternative changes and refinements. This paper formalizes the
late/change merging process and extends the idea to multiple changes to the same base prototype. Applications of
; technology include: automatic updating of different versions of existing software with changes made to the
eline version of the system; integrating changes made by different design teams during development; and checking
ýsistency after integration of seemingly disjoint changes to the same software system.

)ISTRIBUTION/AVAILABILITY OF ABSTRACT ; 21.' ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED " SAME AS RPT. [J DTIC USERS UNCLASSIFIED
OF RESPONSIBLE M5= = 22b. TELEPHONý (include Area Code) 12&EICESMO

u, (408) 646-292
ORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

DTIC QUALITk INSPECiMD 6

A MODEL FOR MERGING SOFTWARE PROTOTYPES
DTiC TAB

David A. Dampier Unannounced

Luqi justification

Computer Science Department
Naval Postgraduate School By ution I..
Monterey, California 93943

e-mail: dampier@cs.nps.navy.mil Availability Codes

or luqi@cs.nps.navy.mil Avail and I or
Dist Special

ABSTRACT A4- II

As software becomes more complex, more sophisticated deve opment and maintenance
methods are needed to ensure software quality. Computer Aided Prototyping achieves this via
quickly built and iteratively updated prototypes of the intended system. This process requires
automated support for keeping track of many independent changes and for exploring different
combinations of alternative changes and refinements. This paper formalizes the update/change
merging process and extends the idea to multiple changes to the same base prototype. Applications
of this technology include: automatic updating of different versions of existing software with
changes made to the baseline version of the system; integrating changes made by different design
teams during development; and checking consistency after integration of seemingly disjoint
changes to the same software system.

KEYWORDS
SOFTWARE, AUTOMATION, COMPUTER AIDED PROTOTYPING, MAINTENANCE,
FORMAL MODELS, SOFTWARE ENGINEERING, SOFTWARE MERGING, CHANGE
INTEGRATION, CASE TOOLS

I. INTRODUCTION
Software development is an ever-increasing and complex industry. As software systems

gain sophistication and maintaining them becomes more difficult, automated software

development methods and the supporting formal models must be devised to increase reliability and

decrease post-development maintenance effort.

Computer Aided Prototyping is one such method to reduce maintenance costs by making

the original requirements conform more closely to the real needs of the users. Systems correctly

Irfis researcn was supported in part by mie National science F-oundation under grant number CotR-

9058453 and in part by the Army Research Office under grant number ARO-145-91.

implementing an accurate set of requirements have lower maintenance costs because there are

fewer surprises when the system is put into actual use. An appreciable part of the maintenance

activity can be carried out by changing/updating the prototype rather than repeatedly updating the

production version of the intended system. This is useful because the prototype description can be

significantly simpler than the production code if the prototype is expressed in a notation tailored to

support modifications, and the software tools in the computer aided prototyping environment can

help carry out the required modifications rapidly [Lu 89]. Prototyping a software system using

tools decreases development time and increases maintainability, because it reduces customer

dissatisfaction with the delivered system [Lu 92].

The designers construct/change prototypes of the intended systems quickly to meet the

customer's desires during the requirements analysis phase. The designers need automated tools

which will allow several changes to a base version of a software prototype to be automatically

combined as well as automatically propagated through multiple alternative versions of the

prototype. Formal models are the keys and foundations for building such automated tools.

Change merging is the process of automatically combining the effects of several changes

to a software system. Change merging has been studied in the context of software maintenance and

conventional methods for software development. Early version control systems such as SCCS

[Si92] and RCS [Ti 821 provide primitive change merging facilities based on string editing

operations on the source text, without considering the effects on program behavior. However

automated tools must provide guarantees regarding program behavior to be trusted by designers.

Semantically-based change merging seeks to construct a program whose behavior agrees with the

changed version in all situations where the behavior of a changed version differs from the behavior

of the base version. The behavior of the constructed program should agree with the base version

2

for all situations where the behaviors of all the changed versions agree with the behavior of the

base. The problem for functional programs was considered in [Be 86]. Semantically-based change

merging based on program slicing [We 84] and data flow analysis has been studied for imperative

while-programs [Re 88, Ho 90]. A general theory of change merging that can apply to any kind of

programming language is described in [Be 91a], along with a high resolution approach to change

merging for while-programs based on specifications and meaning functions [Li 79]. An initial

exploration of change merging models for the prototyping language PSDL can be found in [Da 90].

Change merging is an important aspect of computer-aided prototyping because the

prototyping process is characterized by rapid and extensive changes. The Computer Aided

Prototyping System (CAPS) [Lu 89] is a computer aided prototyping environment comprised of a

software database system, an execution support system, and a user interface that helps designers to

develop prototypes. The software database system manages changes to multiple versions of

prototype designs and provides an expert system to select and retrieve reusable components from

the software base. The design database provides concurrency control functions which allow

multiple designers to update the parts of the prototype without risk of unintentional interference.

In the interests of minimizing delay, the design database will not lock out access to any part of the

design, even while the design is being updated. Instead, the system will allow the previous version

of the component to be examined and updated. Such a parallel update will split off a new branch

or variation in the version history [Lu 90]. The system will provide a warning that a new version

is currently in preparation and information about the reason the component is being modified (i.e.

some particular new or modified requirement) on request. The methods proposed in this paper

provide automated support for combining both branches of a split resulting from parallel updates

to produce a version that incorporates the effects of both of the updates.

3

Our goal is to develop a tool for the CAPS system which will support automatic merging

of different versions of a prototype. We have developed a model which shows that it is possible to

correctly perform a merge operation in most cases [Da 90]. This paper formalizes the change

process for the Prototyping System Design Language (PSDL), a design based language written

specifically for CAPS, and uses this formalization to strengthen our merging model.

II. PROTOTYPING IN CAPS
Computer aided prototyping allows the user to get a better handle on his/her requirements

early in the conceptual design phase of development and use automated tools to rapidly create "a

concrete executable model of selected aspects of a proposed system" [Lu 89], to allow the user to

view the model, and to make comments early. The prototype is then rapidly reworked and re-

demonstrated to the user over several iterations until the designer and the user have a precise view

of what the system should do. This process produces a validated set of requirements which become

the basis for implementing the final product [Lu 89]. The prototype can also become part of the

final product. In some prototyping methodologies, the prototype is an executable shell of the final

system, containing only a subset of the system's ultimate functionality. After the prototype is

approved by the customer, the holes are filled in and the system is delivered. In this approach to

computer aided prototyping, software systems can be delivered incrementally as parts of the

system become fully operational [Lu 89].

CAPS, a computer-aided software development environment, supports prototyping of

embedded hard real-time systems [Lu 89]. CAPS reduces the effort of the prototype designer by

providing an integrated set of tools that help design, translate and execute the prototypes, along

with a language in which to design and program the prototypes.

4

The Prototype System Description Language (PSDL) is the prototyping language

associated with CAPS [Lu 88]. It was created to provide the designer with a simple way to

abstractly specify software systems. A PSDL program is a set of PSDL operators and data types,

containing zero or more of each. PSDL operators and types consist of a specification and an

implementation. The specification defines the external interfaces of each operator through a series

of interface declarations, provides timing constraints, and describes the functionality of the

operator through the use of formal and informal descriptions. The implementation can either be in

PSDL or Ada. PSDL implementations are data flow diagrams augmented with a set of data stream

definitions and a set of control and timing constraints.

IIl. CHANGING PROTOTYPES
A current focus of CAPS is formalization of the change process. In order to discuss the

merging of changes made to a prototype, we must first provide a mathematical model of the change

process.

PSDL prototypes can be considered iterative versions of a software system. If S is the

intended final version of the software system, then each successive iteration of the prototype can

be viewed as an element of a sequence Si where 1im Si =S. Each prototype Si is modelled as a

graph Gi = (Vi, Ei, Ce), where:

A. Vi is a set of vertices. Each vertex can be an atomic operator or a composite operator
modelled as another graph.

B. E1 is a set of data streams. Each edge is labelled with the associated variable name.
There can be more than one edge between two vertices. There can also be edges from an
operator to itself, representing state variable data streams.

C. Ci is a set of timing and control constraints imposed on the operators in version i of
the prototype.

The prototype designer repeatedly demonstrates versions of the prototype to users, and

designs the next version based on user comments. The change from the graph representing the ith

version of the prototype to the graph representing the (i+l)st version can be described in terms of

graph operations by the following equations:

Si÷ 1 = (Vi+ 1, Ei 1, ,C+ I) =Si + ASi

ASi = (VAi, VRi, EA&, ERi, CA&, CRi) where:

Vi + 1 - Vi = VA,: The set of vertices to be added to Si.

Vi - Vi + 1 = VRi: The set of vertices to be removed from Si.

Ei + 1 - Ei = EAi: The set of edges to be added to Si.

Ei- Ei + 1 = ER3 : The set of edges to be removed from Si.

Ci + I - Ci = CA1 : The set of timing and control constraints to be added to Si.

Ci - Ci + 1 = CR3 : The set of timing and control constraints to be removed from Si.

The + operation above is defined as follows:

Vi+ 1 = Vi uVAi- VRi

Ei+1 =Ei uEAi -ERi

Ci+1= Ci u CAi - CRi

The following figures show an example of a change made to a composite operator in PSDL.

Figure 1 contains a graph representation for a composite operator Opl consisting of 4 vertices and

6 data streams. Figure 2 shows a change to be applied to Opl to produce Op2. Figure 3 shows a

graph representation of Op2, the result of applying the change to OpI.

6

100

op1 1

X1 __NOP X6 DýM

Opl = (V1, El, T1, C1)

V1 - {A, B, C, D)

El = ((XI: EXT->A), (X2: A->B), (X3: A->C), (X4: B->D), (XS: C->D),

(X6: D->EXT))

C1 = (maxexectime(B,100ms)}

Figure 1. Example of a composite operator in PSDL

AAOPl = {VRA, VAA, EAA, ERA, TAA, TRA, CAA, CRA)

VAA = {E)
VRA = (C)
EAA = ((X3: A->E), (X7: E->D))

ERA = {(X3: A->C), (X5: C->D)}

CAA = flatency(X7, E, D, SOms))
CRA = {)

Figure 2. Example of a change made to Opl.

7

100

X I X 6

X3 E X7

Operator Op 2 = Opl + AAOPl

Op2 = (V2, E2, T2, C2)

V2 =VlU VAA--VRA {A,B,C,D} U {E} - {C} =(A,B,D,E}

E 2 = E1 UEAA -ERA =

{(Xl: EXT.>A), (X2: A->B), (X3: A->C), (X4: B->D), (XS: C->D), (X6: D->EXT)) U

{(X3: A->E), (X7: E->D)} - {(X3: A->C), (X5: C->D)) =

{(Xl: EXT->A), (X2: A->B), (X3: A->E), (X4: B->D), (X7: E->D), (X6: D->EXT))

C2 = {max_exec_time(B,100ms), latency(X7, E, D, 50ms)}

Figure 3. Example of the changed operator Op2 .

IV. MERGING PSDL PROTOTYPES
Merging different versions of a program is useful in performing automatic maintenance of

software systems. In prototyping, it is common for different versions to evolve from the base

system. If the system designer discovers a fault in the base version of the system, it would be

desirable to have the capability to automatically apply that change to all of the versions currently

in use. In order to do this, the merging process must be able to apply the change to the common

parts of each version without a cfecting the peculiar functionality in each one.

In [Be 90], a definition of merging two compatible extensions of a semantic function was

given as follows:

8

If the functionality of the software systems are represented using sets, then the

result of merging two extensions, A & C of a base version B is defined as:

M=A[BIC= (A-B) U (AAnC) U (C-B)

In this definition, the union, intersection and difference operations are defined as normal

operations on sets. The difference operation, (A - B) for example, yields the functionality present

in the extension, but not inherited from the base version. The intersection operation yields the

functionality preserved from the base version in both extensions. This model preserves all changes

made to the base version, whether extensions or retractions.

In this section, we express our method for merging prototypes using the change model

described in the previous section and the above definition. All PSDL implementations are graphs,

which model their functionality. We have represented these graphs using sets. Different variations

of a prototype are the result of different changes being applied to a common base version. We can

merge the two new versions A and C together by applying the change which produced A from B

to version C, or applying the change which produced C from B to version A. The result is the same

in either case.

Earlier, we defined the (i + 1)st iteration of a software prototype as Si + 1 = Si + ASS. Let

us now look at an ith version which has been changed in two different ways, via A A and AB. The

result of these two changes is SA and SB respectively. Now let us define the (i + 1)st iteration as

Si + 1 =SA[Si]SB = (SA - S) U (SA n SB) U (SB - Si)

The components of Si + 1; Vi + 1, Ei + 1 and Ci + I can be defined similarly:

Vi+ 1 = VA[VI]VB = (VA - Vi) U (VA r) VB) U (VB - Vi)

El+ 1 =EA[Ei]EB = (EA -Ei) U (EA r EB) U (EB -Ei) and

Ci + 1 = CA[CiICB = (CA - C) U (CA n CB) U (CB - Ci)

9

To demonstrate the concept of the merging operation, we provide the following example:

The base prototype is as in Figure 1. Change A is outlined in Figure 2, with the result shown in

Figure 3. Change B is outlined in Figures 4 and 5. The merging operation is performed in F' ure 6

and the result is shown in Figure 7.

The affect of change A is to remove the operator C and replace it with operator E.

Accordingly, the associated data streams must also be changed. The niew data stream X7 also has

a latency associated with it, so a new timing constraint is added. The sets, VA, EA and CA

correspond directly to V2, E2 and C2 shown in Fig. 3.

ABOPI {VRB, VAB, EAB, ERB, CAB, CRB}

VAB = {F}
VRB = {B}
EAB = {(X2 A->F), (X8 F->D)}
ERB = {(X2 A->B), (X4 B->D)}
CAB = {max..exec time(F,50ms)}
CRB =(

Figure 4. Change B applied to Opl.

10

50

X2 F X8

X1 A 5X

X3 C X

Operator OpB = Opl + ABOPI

OpB = {VB, EB, TB, CB}

VB= V1UVAB-VRB = {A,B,C,D} U {F} - {B} ={A,C,D,F}

EB = E1 U EAB - ERB = {(X1 EXT->A), (X2 A->B), (X3 A->C), (X4 B->D), (X5 C->D),

(X6 D->EXT)) U {(X2 A->F), (X8 F->D)) - {(X2 A->B), (X6 B->D)) =

((Xl EXT->A), (X2 A->F), (X3 A->C), (X8 F->D), (X5 C->D), (X6 D->EXT)}

CB = C1 U CAB - CRB = {maxexec time(F,50ms), latency(X7, E, D, 50ns)}

Figure 5. Results of applying change B to Opl.

The affect of change B is to remove the operator B and replace it with operator F. The data

streams associated with these two operators also have to be changed now. A new timing constraint

is also added associated with operator F.

The merge operation outlined in Figure 6 involves determining the real affect of changes

made to the base, and any conflict that may arise due to similar changes between the two variations.

This is a simple example illustrating the merging of two changed prototypes which do not

conflict with one another. In some cases, two changes to a prototype can conflict with one another,

and the result of their merging can be an inconsistent program. In such cases, the engineer must

resolve the conflict off-line. The following section describes some possible conflicts and possible

methods for resolving those conflicts.

11

Op2 =OpA[Opl]OpB = (OpA- Opl) U (OpA - OpB) U (OpB- Opl) =

V2 =VA[V1]VB= (VA- Vl) U (VA n-VB) U (VB- V1),

E2 =iEA[E1IEB= (EA-E1) U (EA r'nEB) U (EB-E1) and

C2 =CA[C1]CB = (CA- Cl) U (CA n CB) U (CB- CO)

Figure 6. Performing the merge operation.

50

X2 X8
Xl A X6

X3 X7

Figure 7. Result of the merge operation.

V. Conflict Resolution
There are a number of possible conflicts which can arise during the performance of the

merging operation. Conflicts arise when different changes applied to the prototype affect the same

portion of the prototype in different ways. Some examples of conflicts are as follows:

1. If one change adds an output edge to a vertex A, while another change removes vertex

A from the prototype. In this case, automatic resolution of the conflict is not yet possible, so the

system would have to notify the designer that a conflict has occurred and give him/her the

opportunity to resolve it.

2. If the two changes assigned different timing constraint values to the same operator, i.e.,

(maxexectime, F, 50ms) and (maxexec_time, F, 40ms). In this case, the conflict can be handled

12

automatically, since any operator which executes in under 40ms would certainly execute in under

50ms. In situations where different maximum execution times have been assigned, the minimum

value can always be chosen. This is also true of two different values for latency, maximum

response time and finish within timing constraints. The minimum calling period timing constraint

would have to be merged using the maximum of the different values. Different period values for

the same operator in different changes would result in a conflict which would have to be resolved

by the designer. Different control constraints for the same part of the prototype in different changes

can also result in a conflict. Some of these conflicts can be resolved automatically. Current work

is addressing methods for automatic resolution of conflicts.

VI. Conclusions

Tool support for manipulating and combining specifications is especially important for

computer aided prototyping. We are currently implementing the method presented here to evaluate

its effectiveness in practical contexts. We are also conducting theoretical studies to evaluate its

limitations and to discover improvements. The method described here works correctly whenever

the functions computed by the operators are one to one. As has been pointed out in [Be 90], a global

analysis of the system may be necessary to ensure that the functions computed by the operators do

not interfere in the general case. For a more detailed discussion of the reasons for this, see [Be 90].

Related work on configuration management and version control is also being performed [Ba 92].

Some issues to be considered in future work are treatment of data types and component

specifications, and the detection/diagnosis of semantic interference between modifications.

13

LIST OF REFERENCES

[Ba 92] Badr, S. and Berzins, V., "A Design Management and Job Assignment System",
Technical Report, CS, NPS, 1992.

[Be 86] Berzins, V., "On Merging Software Extensions", Acta Informatica, Springer-
Verlag, 1986.

[Be 901 Berzins, V. "Software Merge: Semantics of Combining Changes to Programs",
Submitted for publication in ACM Transactions on Programming Languages and
Systems, 1990.

[Be 91a] Berzins, V. "Software Merge: Models and Methods for Combining Changes to
Programs", Journal of Systems Integration, vol. 1, no. 2, August 1991, pp. 121-141.

[Be 91b] Berzins, V. and Luqi, SOFTWARE ENGINEERING WITH ABSTRACTIONS,
Addison-Wesley, Reading, MA, 1991.

[Be 92] Berzins, V., Luqi, Yehudai, A., "Using Transformations in Specification-Based
Prototyping", IEEE Transactions on Software Engineering, August, 1992.

[Da 90] DampierD., A Model for Merging Different Versions of a PSDL Program, Master's
Thesis, Naval Postgraduate School, Monterey, California, June 1990.

[Ho 88] Horwitz, S., Prins, J., and Reps, T., "Integrating Non- Interfering Versions of
Programs", Conference Record of the Fifteenth ACM Symposium on Principles of
Programming Languages, Association for Computing Machinery, New York, New
York, 13 - 15 January 1988.

[Ho 90] Horwitz, S., Reps, T. and Binkley, D., Interprocedural Slicing Using Dependence
Graphs", ACM Transactions on Programming Languages and Systems, January
1990.

[Lu 88]. Luqi, Berzins, V., and Yeh, R., "A Prototyping Language for Real Time Software",
IEEE Transactions on Software Engineering, pp.1409-1423, October 1988.

[Lu 89] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May
1989.

[Lu 90] Luqi, "A Graph Model for Software Evolution", IEEE Transaction on Software
Engineering. Vol. 16. NO. 8. Aug. 1990

[Lu 92] Luqi, "Computer-Aided Prototyping for a Command-And-Control System Using
CAPS", IEEE Software, Jan. 1992.

14

[Li 79] Linger, R., Mill, H., Witt, B., STRUCTURED PROGRAMMING: THEORY AND
PRACTICE, Addison-Wesley, Reading, MA, 1979.

[Re 88] Reps, T. and Yang, W., "The Semantics of Program Slicing", Computer Science
Technical Report #777, University Of Wisconsin-Madison, 1988.

[Re 89] Reps, T., On the Algebraic Properties of Program Integration, Computer Sciences
Technical Report #856, University of Wisconsin at Madison, June 1989.

[Si 92] Silverberg, I., SOURCE FILE MANAGEMENT WITH SCCS, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[Ta 89] Tanik, M. and Yeh, R., "Rapid Prototyping in Software Development", Computer,
vol. 22, pp. 9-10, May 1989.

[Ti 82] Tichy, W.,"Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE,
Tokyo, Sept. 1982.

[We 84] Weiser, M., "Program Slicing", IEEE Transactions on Software Engineering SE-
10, 4(July 1984), 352-357.

15

DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Director of Research Administration, Code 08
Naval Postgraduate School
Monterey, CA 93943

Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943

CPT David A. Dampier, USA 10
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Dr. Luqi 10
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Dr. Valdis Berzins
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Dr. Mantak Shing
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Dr. Craig Rasmussen
Mathematics Department, Code MA
Naval Postgraduate School
Monterey, CA 93943

Dr. Dan Dolk
Administrative Science Department, Code AS
Naval Postgraduate School
Monterey, CA 93943

16

